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DISSIPATIVE HEATING OF A MEDIUM DURING ROTATION OF A 

DISK IN A BOUNDED SPACE 

Yu. E. Makhovko and A. N. Kovalenko UDC 536.244:532.526.75 

A method is proposed for calculating dissipative heating of a medium in a model of 
a turbine stage. Results of the calculation are compared with experiment. 

Consideration of the problem of flow thermodynamics around rotating axisymmetric bodies 
grew out of the requirements of power-machine construction to a considerable extent. In the 
literature up to now the principal attention has been given to problems of hydrodynamic re- 
sistance and heat transfer during rotation of bodies in free and bounded spaces [1-3] with- 
out analysis of the changes in the parameters of the medium during the irreversible conver- 
sion of mechanical energy into heat. At the same time, the enclosure of a rotating body in 
a bounded chamber presupposes a significant intensification of the effect of dissipation on 
the thermal state of the medium. There is great interest in the consideration of the rota- 
tion of a disk in a cylindrical chamber from this viewpoint, since the flow portion of vari- 
ous turbines contains as a required element alternately arranged rotating and fixed flat sur- 
faces perpendicular to the axis of rotation. 

Theoretical and experimental studies of flow hydrodynamics in rotating systems yield 
only qualitative results in most cases because of the extreme complexity of the processes. 
Calculations are possible with a number of important simplifications and assumptions which 
significantly reduce the accuracy of the results. 

A rotating disk acts like a centrifugal fan and creates a suction that causes radial mo- 
tion of the medium from a center near the disk to a center near the chamber walls. In addi- 
tion to rotation around the axis of the disk and vortex motion in the meridional plane, a 
certain flow rate of the medium, Gs, ordinarily occurs in the gap between a rotating disk of 
the turbine and the cylindrical chamber; this is associated with the flow or with the need 
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J 

Fig. i. Diagram of medium 
flow in gap between sur- 
faces of disk and chamber. 
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Fig. 2. Nomogram for calculating dissipative heating of 
a medium during rotation of a disk in a bounded space. 

for special cooling. For adequate values of the gap h and for high rates of rotation ~, the 
formation of separate boundary layers at the disk and at the fixed walls is observed where 
the main change in the circumferential velocity of the medium occurs. In the core of the 
flow, a constant value of the circumferential velocity of the medium, v~=v~,, is established 
at a given radius r. 

We estimate the frictional power of a rotating disk for the simplest scheme of axisym- 
metric flow around the disk with delivery at a given cooling flow rate along t~e axis on one 
side of the disk and discharge on the other (Fig. i). 

As in [i], calculation of the increment of angular momentum with respect to the axis of 
rotation in the circumferential direction for an annular element of the medium between the 
disk and chamber wall yields the following relations: 

h 

d (2gr29. t 'Vrv~dz)=2gr2(~[w_v~,d) ' 
dr 

0 

T~ld = Kd Ps (r~ - -  v~,) 2 (1) 
2 

2 

%]w= K w  P*v~----!-'* �9 
2 

One can obtain from Eqs. (i) a relation for the frictional force df acting on elementary 
annular surfaces of the disk and chamber wall: 

h 

d ~ - - d ~  = - - 1  d 2~r2p~ v~v~dz , 
r 

o 

d/w= 2urdm~iw (2) 

d~ = 2ardm, I d. 

Neglecting the effect of vortex flow in the meridional plane of the chamber and assuming 
that the component v r results only from the flow Gs, a similar relation can be written for 
the frictional forces on the opposite side of the disk but with the opposite sign on the right 
side, since the direction of v r is reversed. The total frictional force for the disk, dFd, 
is the sum of these equations. Assuming that the values of K w and K d do not depend on the 
direction of the radial velocity, we obtain 

dF d = 2d/d = 2Kd2grdr P8 (rm - v~,) z = 2Kw2grdr p,v$, 
2 2 (3) 

Equation (3) indicates that the ratio between the average circumferential velocity of 
the medium and the circumferential velocity of an annular element of the disk is 

e _ v ~ .  _ 1 
, ( 4 )  l/e; 
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Comparison of calculated and experimental results 
a) steady temperature 

state of flow-through section of P-50-130 turbine in vapor- 
free mode; n, stage number; b) kinetics of medium heating 
in individual stage of K-100-90 turbine; t, min; c) kinet- 
ics of medium heating along flow-through portion of P-50- 
130 turbine; t, h; T, =C. 

where e = 0.5 for K d = K w . 

The frictional power is determined from the product of frictional force and velocity [4]: 

r i r 

r l  r l 

For known coefficients of friction K d and K w assumed constant along the radius, integra- 
tion of this equation yields 

N = Bps ,  B = 2 = K w ~ Z ~ 8 ( r ~ - - r ~ ) .  ( 6 )  
5 

Because of the number ofassumptions, the derived equation is only applicable for rough 
calculations of the frictional power of rotating systems. Methods given in the literature 
[3] make it possible in certain cases to solve numerically the equation of angular momentum 
with allowance for the variability of Kw, Kd, and e along the radius and also for the effect 
of the flow rate G s on them. For complex cases of flow, however, such as in a turbine stage 
with rotation of a rotor disk in a space of complex configuration with numerous sections of 
local reverse flows and separation phenomena, it is necessary to turn to empirical equations 
similar in structure to Eq. (6). A number of empirical formulas obtained by Stodola, Kerr, 
Forner, etc., which are widely used in power-machine construction, are given in [4]. 

Because of the work done by frictional force in the medium and at its boundaries, fric- 
tional heat is released which heats up both the medium itself and the material in the disk 
and chamber walls. To simplify the problem, the material in the chamber walls is assumed 
thermally nonconducting and the thermal resistance of the disk and medium is assumed negli- 
gibly small so that their spatial temperature field is uniform. It is further assumed that 
the pressure forcing the medium through is constant and equal to the pressure in the suction 
chamber where the heated medium enters. Considering rotation of a disk in a medium which is 
an ideal gas with allowance for the above statements, one can write the following basic re- 
lations for dissipative heating: 

CsPsVsdT s + cdmddT d = N d t  + csGsT s i dt  - -  c s (0  s + 8Gs) Tsdt, ( 7 )  

P ,  
T,  = T  d ,  N = B9, ,  - -VsdP~ = 8G~dt, Ps = , P ,  = const .  Rr, 

As boundary conditions, it is assumed the temperature of the medium as the entrance to 
the chamber is constant and equal to the initial temperature of the disk: 

T~It=o = To, Tsenlt~o = eons t  = T o. ( 8 )  
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As experimental studies have shown [5-7], the limitations assumed correspond to actual 
relationships in steam turbines for operation in the so-called "vapor-free mode" where the 
effects of dissipation appear in purest form. 

By usual means, one can obtain from Eq~ (7) an equation for the temperature of the me- 
d ium: 

( 1  @ CdmdR ) d T ' -  B ' G~RT~ T~ G~R T~. (9) 
2c~P,V~ dt 2qV8 2P~V~ 2P.V~ 

Equation (9) is directly integrable but the resultant relation t = t(T s) is unsuitable 
for analysis and practical calculations because of its inverse functional dependence. It is 
quite advantageous, then, to convert the original equation (9) to another form and corre- 
spondingly obtain its solution in a different form which is more reasonable from the physical 
aspect. Thus the substitutions 

! 
1 -+- g~T s -- , g = x (t) ~l (~), 

Y 
(lO) 

x = e x p  i ( - - ~ ) d t ,  ~ = ; ( x  2U2 Ux) dt, 
gl 

where 
CdmdR 

2P,c~Vs 

U 1 - -  G~RTo, U 2 = GsR 
2PsV, 2PsV ~ ' 

bring the solution to the following form according to [8]: 

Ts=To-~(Tsmax--To)[1--exp(---- 
<ma._.r0+l / r0 2+ BP, 

- 2 ' ( 2 J c,G,----R'" 

cdn d (ll) 

To facilitate the practical use of the solution (Ii), a nomogram is given in Fig. 2 for 
solution in the relative variables 8, H, and P: 

0 = T--~s 0 m a x  __ T~ ma~ 
To ' To ' 

(12) 
H = BPa q r _  csGs t. 

CsGsRTg ' cdmd 
The nomogram makes i t  n o t  o n l y  p o s s i b l e  to  o b t a i n  w i t h  s u f f i c i e n t  a c c u r a c y  p o s s i b l e  tem- 

p e r a t u r e s  o f  t he  medium in  t he  chamber f o r  g iven  p a r a m e t e r  v a l u e s ,  bu t  a l s o  to  s e l e c t  t h e s e  
p a r a m e t e r s  w i t h  a v iew toward  p r o d u c i n g  a d e s i r e d  t e m p e r a t u r e  s t a t e  of  t he  medium in  which 
t h e  d i s k  r o t a t e s .  

The acceptability of the assumptions made above and of the resultant equations was checked 
by a comparison of calculated results and experimental results [5-7] from studies of the tem- 
perature state of the steam in the flow-through stages of P-50-130 and K-100-90 turbines from 
the Leningrad Metal Plant during their operation in the vapor-free mode at a given cooling 
flow rate. The frictional power of the rotor disk in the stage was computed from the empiri- 
cal formula of Stodola [4]. As is clear from Fig. 3, the agreement of the results is com- 
pletely acceptable for engineering calculations. 

NOTATION 

T, 8, temperature; P, pressure; V, volume; m, mass; G, flow rate; p, density; c, specific 
heat; v, linear velocity; ~, circumferential velocity; K, coefficient of friction; T, tan- 
gential stresses; f, F, forces; R, gas constant; N, power; t, time; r, ~, z, coordinates. 
Indices: d, disk; w, wall; s, medium; i, inlet; 0, initial; max, maximum. 
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EFFICIENCY OF CONVECTIVE CIRCULAR FINS WITH A 

TRIANGULAR PROFILE 

I. R. Mikk UDC 536.21:621.181.14 

We propose a graph for determining the efficiency factor of circular fins with a 
triangular profile, as well as a table of the principal parameters of such fins with 
minimum mass. 

For circular fins with a triangular profile, of the kind shown in Fig. i, the convective 
heat flux through the base is given by the formula 

, 60 ~o0~ (1) Qo = 2 n q l ~ @ o  (~ ~ 1) !1 = - -  2 n r  I ~ -  

where ~ = r2/r,, O~ is the dimensionless temperature gradient near the base of the fin, and 
q is the efficiency factor of the fin, which depends on the geometric shape of the fin and 
on the dimensionless parameter 

2~12 - -  2 Bi . ( 2 )  

The function q(o) is defined by the relations in Eq. (i): 

20~ 
= -- (~ -5 I)~ (3) 

In order to determine q we need a solution of the differential equation of the tempera- 
ture field, which (p = r/Z; A = 6/60; 8 =@/~o), on the assumption that the heat flux is 
propagated only in the radial direction (one-dimensional problem), has the form 

dp p dp ~ -@@\ dp, -- ~(pO):O" (4) 

For triangular ang trapezoidal profiles the dimensionless thickness A of the fin can be ex- 
pressed linearly in terms of 0: 

A = - - ~  --p. (5) 
~--I 
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